<u>NOTATION</u>. T_i and \hat{T}_i , temperature and mean temperature over the cross section for component i; q_{ij} heat flux density from component i to component j; c_i , ρ_i , λ_{ri} , λ_{zi} specific heat, density, and radial and axial thermal conductivities correspondingly; α_c and R_T , heat-transfer coefficient and contact thermal resistance between components; α_{g0} (α_{gH}), heat-transfer coefficient between gas and composite; T_{g0} (T_{gH}), gas temperature; R_f rod radius.

LITERATURE CITED

- 1. G. N. Dul'nev and Yu. P. Zarichnyak, Thermal Conductivities of Mixtures and Composites [in Russian], Leningrad (1974).
- L. A. Kozdoba, Proceedings of the Seventh All-Union Conference on Heat and Mass Transfer [in Russian], Vol. 7, Minsk (1984), pp. 34-39.
- 3. G. C. J. Bart, C. J. Hoogendoorn, and P. B. J. Schaareman, Warme- und Stoffubertragung, <u>20</u>, No. 4, 269-272 (1986).
- 4. L. P. Khoroshun and Yu. A. Ivanov. Prikl. Mekh., 21, No. 11, 43-50 (1985).
- 5. I. V. Goncharov and V. L. Mikov, Inzh.-fiz. Zh., <u>58</u>, No. 2, 311-316 (1990).
- 6. V. V. Vorobei, Yu. A. Ivanov, and L. P. Khoroshun, Prikl. Mekh., <u>22</u>, No. 10, 86-91 (1986).
- 7. I. V. Goncharov and V. L. Mikov, "The temperature pattern in a reinforced composite for boundary conditions of the second kind," deposited at VIMI January 19, 1989, No. D07661.
- 8. D. L. Balageas, HT-HP, <u>16</u>, No. 2, 199-208 (1984).
- 9. J. Jortner, Winter Annual Meeting of the American Society of Mechanical Engineers, Arizona (1982), pp. 19-27.
- R. Richtmayer and C. Morton, Difference Methods of Solving Boundary-Value Problems [Russian translation], Moscow (1972).
- 11. C. G. Goetzel, HT-HP, <u>12</u>, No. 1, 11-22 (1980).
- 12. W. J. Parker, R. J. Jenkins, and C. P. Butler, J. Appl. Phys., <u>32</u>, No. 9, 1679-1683 (1961).
- 13. R. L. Shoemaker, HT-HP, <u>18</u>, No. 6, 645-654 (1986).
- 14. R. Taylor, J. Jortner, and H. Groot, Carbon, 23, No. 2, 215-222 (1985).
- 15. R. M. Pujola and D. L. Balageas, HT-HP, <u>17</u>, No. 6, 623-632 (1985).
- 16. I. V. Goncharov and V. L. Mikov, Inzh.-fiz. Zh., <u>58</u>, No. 3, 493-495 (1990).

SPECIFIC HEAT AND THERMODYNAMIC CHARACTERISTICS OF THE

SYSTEM Bi-Sr-Ca-Mg-Cu-O IN THE TEMPERATURE RANGE

4.2-300 K

UDC 537.312.62

- E. M. Gololobov, B. V. Novysh, N. A. Prytkova, Zh. M. Tomilo,
- N. M. Shimanskaya, Ya. A. Abeliov,
- G. V. Maiornikova, and A. B. Yagina

Results are presented from an experimental study of specific heat of the superconductive metal oxide system Bi-Sr-Ca-Mg-Cu-0 over the temperature range 4.2-300 K. Temperature-dependent components of entropy and enthalpy are calculated. A correlation is made between T_c and standard entropy and enthalpy values for high temperature superconductors of various classes.

There is a current trend toward deeper study of high temperature superconductor (HTSC) materials in order to accumulate information on this phenomenon, the physical nature of which is still unclear. In this respect the thermodynamic characteristics and their standard values are important for constructing phase diagrams in various coordinate systems, determining the character of phase transitions, etc. [1-3]. Such data are very lacking for HTSC materials [4-6].

Translated from Inzhenerno-fizicheskii Zhurnal, Vol. 60, No. 6, pp. 974-979, June, 1991. Original article submitted July 12, 1990.

Specimen No.	Composition	ρ, kg/ m ³	Mass, g	Formula weight	T _c , K (R)	(Čp)
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	$\begin{array}{c} \text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_y\\ \text{Bi}_2\text{Sr}_2\text{Ca}_{0,8}\text{Mg}_{0,2}\text{Cu}_2\text{O}_y\\ \text{Bi}_2\text{Sr}_2\text{Ca}_{0,5}\text{Mg}_{0,5}\text{Cu}_2\text{O}_y\\ \text{Bi}_2\text{Sr}_2\text{Ca}_0\text{Su}_2\text{O}_y\\ \text{Bi}_2\text{Sr}_2\text{Ca}\text{Mg}\text{Cu}_2\text{O}_y\\ \text{Bi}_2\text{Sr}_2\text{Ca}\text{Mg}\text{I}_{1,0}\text{Cu}_2\text{O}_y\\ \text{Bi}_2\text{Sr}_2\text{Ca}\text{Mg}\text{I}_{1,0}\text{Cu}_2\text{O}_y\\ \end{array}$	4347 5400 5200 5400 4000 4400	1,267 1,749 1,810 1,707 1,210 1,562	888,4 885,2 880,5 872,6 912,7 1131	79 77 58 <4,2 75 88	$\begin{vmatrix} 85 \\ 60 \\ 75,5 \\ <4,2 \\ 74 \\ 92 \end{vmatrix}$

TABLE 1. Some Characteristics of Bi-Sr-Ca-Mg-Cu-O Specimens

The present study will offer experimental results on the specific heat C_p of a system of superconductive metal oxides $Bi_2Sr_2Ca_{1-x}Mg_xCu_2O_y$ (x = 0, 0.2, 0.5, 1.0) and $Bi_2Sr_2CaMg_x$ - Cu_2O_y (x = 1.0 and 10.0) and values of the thermodynamic functions calculated from C_p : the entropy S⁰(T) and enthalpy H⁰(T) - H⁰(0). Separation of the total heat capacity into electron and phonon components permits calculation of the temperature-dependent portions of the entropy S⁰(T)_{el} and S⁰(T)_p and enthalpy H⁰(T)_{el} - H⁰(0)_{el} and H⁰(T)_p - H⁰(0)_p.

Specimen synthesis was carried out with well dried finely dispersed powders of the oxides Bi_2O_3 , MgO, CuO and carbonates $SrCO_3$ and $CaCO_3$ at a temperature of $800-870^{\circ}C$ in air (specimens Nos. 1, 2, 3, 4, 5, Table 1). Specimen No. 6, containing magnesium in the amount x = 10, was synthesized at 1100°C over 1 hr, then annealed at 810°C for 24 hr in air. The superconductive properties, phase composition, and microstructural characteristics of these specimens were reported in [7-10].

Specific heat measurements were performed with the automated low-temperature calorimetric apparatus of [11] in an adiabatic regime with periodic introduction of heat with an uncertainty of not more than 1% over the temperature range 5-50 K, 2% over 50-80 K, and 0.3% for 80-300 K. The characteristics of the specimens studied are presented in Table 1. Figure 1 shows the experimental data for $C_p(T)$ for the six compositions studied.

Estimates of the Sommerfeld coefficients and Debye temperature at T = 0, characterizing the electron and phonon components of the heat capacity in the low temperature limit (4.2-14 K) showed that for specimens which are superconductive in this range (specimens Nos. 1, 2, 3, 5, 6) $\gamma(0)$ can be considered equal to zero. For specimen No. 4, in which all the calcium atoms were replaced by magnesium, and which does not enter the superconductive state at 4.2 K, $\gamma(0) = 0.032 \text{ J/(kg} \cdot \text{K}^2)$. For specimens Nos. 1, 2, 3, 5, 6 γ was evaluated from the change in heat capacity at T_c in the Bardeen-Cooper-Schrieffer theory approximation. Results are presented in Table 2. The electron state density at the Fermi level N(E_F) was also calculated in the BCS weak bond approximation with the expression: N(E_F) = $(3/(2\pi^2k_B^2))\gamma$, where k_B is Boltzmann's constant.

Considering the temperature dependence of the electron component of the heat capacity C_p for the normal state in the form YT and for the superconductive state in the form of an exponential with exponent $2\Delta/T_c = 4$ [12], C_p was separated into electron and phonon components and the temperature-dependent portions of the electron and phonon entropy $S^0(T)_{el}$, $S^0(T)_p$ and

TABLE 2. Values of $\Delta C_p/T_c$, γ , $N(E_F)$, Θ_D (0), Θ_D (100 K) Θ_D (200 K) and Θ_D (300 K) for System Bi-Sr-Ca-Mg-Cu-O

Speci- men No.	$\Delta C_p/T_c,$ J/(kg·K ²)	γ, J/(kg· K ²)	N(E _F) states/eV atom	Θ _D (0), K	θ _D (100 K) K	ө _D (200 к) К	ө _D (300 К) К
1	0,071	0,049	$\begin{array}{c} 0,55\\ 0,51\\ 0,44\\ 0,40\\ 0,57\\ 0,27\end{array}$	220	432	513	510
2	0,058	0,041		230	434	512	532
3	0,050	0,035		230	440	513	541
4	0,000	0,032		250	453	570	604
5	0,067	0,047		240	430	460	365
6	0,040	0,028		220	515	550	516

Fig. 1. Temperature dependence of specific heat C_p (J/(kg·K)) of Bi-Sr-Ca-Mg-Cu-O over interval 4.2-300 K; insert shows C_p/T (J/(kg·K²)) vs. T (numerals 1-6 correspond to specimen Nos. in Table 1).

enthalpy $H^{0}(T)_{el} - H^{0}(0)_{el}$, $H^{0}(T)_{p} - H^{0}(0)_{p}$ were calculated for the HTSC's studied. Figure 2 shows temperature dependences of total entropy $S^{0}(T)$ and total enthalpy $H^{0}(T) - H^{0}(0)$ for the system Bi-Sr-Ca-Mg-Cu-O. Table 3 presents standard values of total and phonon entropy, as well as total and phonon enthalpy $(S^{0}_{298,15} \text{ and } H^{0}_{298,15} - H^{0}_{0})$.

The results of calculating the thermodynamic functions reveal that in the system Bi_2Sr_2 - $Ca_{1-X}Mg_XCu_2O_y$ partial replacement of calcium atoms by magnesium, accompanied by intense degradation of superconductive properties [8], followed by complete replacement of Ca by Mg, leads to a decrease in standard values of entropy and enthalpy, both total and phonon values. On the other hand, upon addition of magnesium to $Bi_2Sr_2CaMg_XCu_2O_y$ in the quantity x = 1.0 and 10.0 $S^0_{298,15}$ and $H^0_{298,15}$ - H^0_0 , total and phonon, increase.

For comparison of the present standard entropy and enthalpy values for a basic Bi_2Sr_2 - $CaCu_2O_y$ specimen (Table 3) we present data from [5] for the composition $Bi_2Sr_2Ca_{1,2}Cu_{1,8}$ - $O_{8+\delta}$: $S_{298,15}^{\circ} = 458 \text{ J/(kg·K)}$, $H_{298,15}^{\circ} - H_0^{\circ} = 70920 \text{ J/kg}$ and for the composition $Bi_2Sr_{2,3}^{\circ} - Ca_{0,7}Cu_2O_{8+\delta}$: $S_{298,15}^{\circ} = 449 \text{ J/(kg·K)}$ and $H_{298,15}^{\circ} - H_0^{\circ} = 68000 \text{ J/kg}$. One may note the completely satisfactory agreement of the results. Figure 3 shows the dependence of standard total entropy and enthalpy values on superconductive transition temperature T_c for various compositions and classes of HYSC material. As is evident from the figure, there is a definite correlation between T_c and $S_{298,15}^{\circ}$, T_c and $H_{298,15}^{\circ} - H_0^{\circ}$: HTSC compounds having higher values of the standard thermodynamic functions correspond to higher T_c values also.

To summarize, we may conclude that with replacement of calcium atoms by magnesium in $Bi_2Sr_2CaCu_2O_y$, high temperature superconductive metal oxides $Bi_2Sr_2Ca_{1-x}Mg_xCu_2O_y$ are formed with small teamperature-dependent energy functions, while the functions decrease with increase in magnesium content; in contrast, addition of Mg to $Bi_2Sr_2CaCu_2O_y$ leads to formation of a system with higher thermodynamic parameter values. A correlation has been established between T_c and standard entropy and enthalpy values for HTSC materials.

NOTATION

 C_p , total specific heat at constant pressure; $S^{\circ}(T)$, $S_{298,15}^{\circ}$, total entropy and standard value thereof; $S^{\circ}(T)_{el}$ and $S^{\circ}(T)_p$, electron and phonon entropy; $H^{\circ}(T)-H^{\circ}(0)$, $H_{298,15}^{\circ}-H_{0}^{\circ}$, temperature-dependent portion of total entropy and its standard value; $H^{\circ}(T)_{el} - H^{\circ}(0)$,

Fig. 3. Correlation between T_c (K) and the standard values of entropy $S_{298,15}^0$ (J/(kg·K)) and enthalpy $H_{298,15}^0$ (J/lg) for HTSC materials of various classes: 1) La-system [6], 2) Y [6], 3) Gd [6], 4) Ho [6], 5) Yb [6], 6) Bi [5], 7) Tl [5], 8) Bi-Mg (our data).

 $H_{298,15}^{0} - H_{0}^{0}$ $s^{0}_{298,15}$ $H_{298,15}^{0}-H_{0}^{0}$ $S^0_{298,15}$ Speci-(phonon) (phonon) (total) men No. (total) J/(kg·K) J/kg 71480 69470 472 459 1 68820 2 451 70880 463 70340 68820 3 452 46266430 437 68060 4 448 74645 $\mathbf{5}$ 494 480 76780 6 500 82930 81660 508

TABLE 3. Standard Entropy and Enthalpy Values for System Bi-Sr-Ca-Mg-Cu-O

 $H^{0}(T)_{p}$ -H⁰(0), temperature-dependent portions of electron and phonon enthalpy; ρ , density; T_{c} , temperature of transition to superconductive state; $T_{c}(R)$, T_{c} determined by resistance measurements; $T_{c}(C_{p})$, T_{c} determined from calorimetric measurements; γ , Sommerfeld constant; Θ_{D} (0), Θ_{D} (100 K), Θ_{D} (200 K) and Θ_{D} (300 K), characteristic Debye temperatures at 0, 100, 200, and 300 K respectively; $N(E_{F})$, electron state density at Fermi level.

LITERATURE CITED

- 1. P. Gerdanian, C. Picard, and J. F. Marucco, Physica C, <u>157</u>, No. 1, 180-188 (1989).
- 2. M. V. Glazov and G. S. Burkhanov, Zh. Fiz. Khim., 13, No. 1, 230-231 (1989).
- A. A. Abrikosov, A. I. Buzdin, M. L. Kulich, and D. A. Kuptsov, Zh. Eksp. Teor. Fiz., 95, No. 1, 371-383 (1989).
- 4. H. Oesterreicher and M. Smith, Mater. Res. Bull., 22, No. 12, 1709-1714 (1987).
- K. S. Gavrichev, V. E. Gorbunov, I. A. Konovalova, et al., Neorg. Mater., <u>23</u>, No. 12, 2101-2105 (1987); ibid, <u>24</u>, No. 12, 2078 (1988); <u>26</u>, No. 5, 1102-1104, 1113-1115 (1990).
- 6. V. B. Lazarev, K. S. Gavrichev, V. E. Gorbunov, et al., Zh. Neorg. Khim., <u>35</u>, No. 1, 3-11 (1990).
- E. M. Gololobov, N. A. Prytkova, Zh. M. Tomilo, et al., Vests. Akad. Navuk B. SSR, Ser. Fiz.-Mat. Navuk, No. 5, 38-41 (1988).
- E. M. Gololobov, N. A. Prytkova, Zh. M. Tomilo, et al., Pis'ma Zh. Eksp. Teor. Fiz., <u>48</u>, No. 7, 384-386 (1988).
- E. M. Gololobov, N. A. Prytkova, Zh. M. Tomilo, et al., Pis'ma Zh. Tekh. Fiz., <u>16</u>, No. 4, 32-36 (1990).
- E. M. Gololobov, N. A. Prytkova, Zh. M. Tomilo, et al., Phys. Status Solidi A, <u>114</u>, No. 1, K57-K61 (1989).
- V. M. Malyshev, G. A. Mil'ner, and E. L. Sorkin, Prib. Tekh. Eksp., No. 6, 195-197 (1985).
- V. M. Dmitriev, A. P. Solov'ev, A. I. Dmitrienko, et al., Fiz. Nizk. Temp., <u>15</u>, No. 5, 518-520 (1989).